If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+22k-1=0
a = 3; b = 22; c = -1;
Δ = b2-4ac
Δ = 222-4·3·(-1)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-4\sqrt{31}}{2*3}=\frac{-22-4\sqrt{31}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+4\sqrt{31}}{2*3}=\frac{-22+4\sqrt{31}}{6} $
| 6x+4x-6=4x+5x+10 | | x+63=48+179 | | -4=0.1x-1 | | -6x+1=3(2x-4) | | 2b+1=19 | | 4x2=225 | | -4=0.5x-0.1 | | 0.5x=3.9 | | 4a-2a-2=20 | | 25x+3=6x | | 5(3x+4+2/5)=65 | | 9j+5=8j-5 | | 8x+-3=6x-9 | | √c=12 | | −4(−3+x)=20 | | 5=3*2x | | 2w+2(w+4+1/4)=128+1/2 | | 4-2k=6k-12 | | 11=3x+x² | | 200.96=r² | | 1-x/6=x/3+1/2 | | 9x+31x-8=10(4x+10) | | 1+4(1+8p)=229 | | 6-⅔(x+5)=4x | | 4x(x+5)=20x | | 1/2-1/x-1=3/5 | | b-102=4 | | 200.96=r²(X×3) | | x(x+5)=20x4 | | x^2=16/2 | | b-10/2=4 | | X(4x+5)=20x |